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1 Introduction

Estimation for distributed parameter systems governed by partial differential
equations (PDEs), such as those found in applications ranging from pollution
control (Omatu et al. (1988)) to the modeling of ecological systems and flexible
structures (Banks and Kunisch (1989)), has received considerable attention in
the estimation and control communities in the past. While there have been suc-
cessful applications of the theory of optimal estimation for such systems, it is
also true that there are severe computational barriers that limit the domain in
which truly optimal methods can be implemented. Indeed this is certainly the
case in the field of remote sensing in which “data assimilation,” the melding of
data with dynamic models, represents one of the most significant current-day
problems. For example, in problems of atmospheric or oceanographic data
assimilation(Fieguth et al. (1995)), the dimensionality of finite-dimensional
approximations to the underlying dynamics can range from hundreds of thou-
sands to hundreds of millions. Given the need in such applications to produce
both estimates and estimation error variances, the computational challenge
is substantial. Indeed, conventional linear least squares estimation (LLSE)
algorithms, such as Kalman filtering, are completely impractical for solving
such large problems both for computational and for storage reasons. A crit-
ical aspect of these estimation problems is the requirement that estimation
error statistics be computed. This necessity precludes the use of accelerated
methods such as multigrid (Briggs (1987)), which do not supply such error
statistics, or the FFT, which requires spatially stationary prior models and
spatially regular measurement patterns, requirements that cannot be met in
many applications including most, if not all, remote sensing problems.

For these reasons, it is clear that there is a need for suboptimal (that is,
approximate) estimation algorithms that can deal effectively with the compu-
tational challenges. The key to doing this is to find a compact and effective
representation for the statistics of the estimation errors, avoiding the storage
or computation of large covariance matrices.

Consider time-recursive estimation for spatially distributed phenomena; this
procedure can be viewed as an interleaved sequence of (i) temporal prediction
and (ii) purely static spatial estimation problems. The standard Kalman filter
approach, illustrated in Fig. 1(a), is to explicitly calculate the full covariance
and the Kalman gain at each step. Each filter update step corresponds to
solving a static estimation problem, namely that of estimating the errors in
the one-step predicted estimates Z(¢|t — 1) from the measurement innovations
at time t. The exact Kalman filter propagation and solution of this problem
corresponds to an ezxplicit solution of each such static estimation problem by
explicitly calculating full covariance and gain matrices, leading to associated
complexity O(N?).



An alternative recursive procedure(Chin et al. (1995)) is one in which we
propagate a statistical model for the one-step predicted estimation errors, as
shown in Fig. 1(b). Such models implicitly specify the error statistics, although
any desired element of the full error covariance can be computed (dashed
lines in figure). The implicit nature of the representation leads to an implicit
description of the optimal estimator; that is, our result is an algorithm rather
than an explicit gain matrix, much as the Kalman filter is implicit and the
Wiener filter explicit.

Clearly the major issue, then, is to find an implicit representation of the spa-
tial error statistics that can be efficiently predicted and updated, improving on
the O(N®) complexity of the Kalman filter by orders of magnitude. In (Chin
et al. (1995)) an approach was developed to use a Markov random field frame-
work as an implicit representation for the spatial error models. Such models
do indeed capture a rich class of spatial phenomena and in particular were
demonstrated to lead to near-optimal estimation performance for problems in
dynamic computer vision, however the actual solution of the spatial estima-
tion problem for each measurement update using such a model is not nearly
as efficient.

Instead, in this paper, we consider the use of an alternative implicit representa-
tion, namely the multiscale stochastic modeling and estimation methodology
developed in (Basseville et al. (1992); Chou et al. (1994a)). These multiscale
models have been demonstrated to yield extremely fast solutions to purely
spatial (i.e., temporally static estimation problems), including the modeling
of 1/f processes (Daniel and Willsky (1997a); Luettgen et al. (1993)), large
distributed phenomena for remote sensing in oceanography (Fieguth et al.
(1995, 1998); Menemenlis et al. (1997)) and hydrology (Daniel and Willsky
(1997b)). For the class of multiscale models considered in this paper, given
a multiscale model having a state dimension d < N, then the complexity to
estimate a spatial process with N points is O(Nd?), much less than O(N?)
for standard least-squares.

Taken together, the existence of the multiscale framework (a highly efficient
static estimator) and the implicit modeling paradigm of Fig. 1 strongly mo-
tivate applying multiscale techniques to estimate dynamic or time-recursive
systems; this is the fundamental contribution of this paper.

To apply this framework to a time-recursive problem requires finding a mul-
tiscale model for the estimation errors, and the derivation of an algorithm in
order to propagate the multiscale model over time:

(1) Why should multiscale models be capable of modeling the estimation er-
rors for distributed parameter systems? A rich literature already exists
for the theory, stochastic realization, and parameter estimation of multi-



scale models for one-dimensional processes (Basseville et al. (1992); Chou
et al. (1994a, 1994b); Daniel and Willsky (1997b); Fieguth and Willsky
(1996); Irving (1998); Luettgen and Willsky (1995)) and two-dimensional
systems (Chin et al. (1995); Fieguth et al. (1995, 1998); Irving et al.
(1997); Luettgen et al. (1993); Menemenlis et al. (1997)).

We are interested in approzimating the statistics of a given field; that
is, we intentionally sacrifice a small amount of statistical fidelity in or-
der to obtain multiresolution models that have small state dimension d.
For a surprisingly rich class of purely spatial processes, low-dimensional
multiresolution models have been constructed that yield near-optimal
estimation performance (that is, with statistically insignificant discrep-
ancies).

The basics of multiscale modeling are discussed in Sections 2 and 4.

(2) Past work on multiscale models considered static estimation problems,
where the model is fixed a priori. In the time-recursive context the esti-
mation error statistics, and consequently the associated multiscale model,
can change at each successive time if we are not in temporal steady-state.
The particular problem of quickly propagating a multiscale model over
time 1s unexplored and represents a new, significant contribution of this
paper.

The principles of multiscale-model prediction are presented in Sec-
tion 3. A new multiscale model, which leads to significant performance
increases in the time-recursive context, is discussed in Sections 2 and 4,
with examples and performance comparisons shown in Section 5.

2 Multiscale Modeling and Realization

In the multiscale estimation framework of (Basseville et al. (1992); Chou et al.
(1994a); Irving (1998)), random processes and random fields are modeled on
tree structures. The nodes of these trees are organized into a sequence of
scales, where the finest-level scale should be thought of as a discretization of
the spatial domain of interest. A node s on the tree is connected to a unique
parent node, s, at the next coarser level, and to several child nodes sa;
(¢ =1,...,q), at the next finer level. In general the number of children may
vary from node to node. However, for our purposes focusing on the 1-D spatial
domain, it is sufficient for us to restrict our attention to uniform ¢ = 2 dyadic
trees, depicted in Fig. 2.

The multiscale process is a collection of zero-mean random vectors @(s), in-
dexed by nodes s on the tree and specified by a scale-to-scale relationship of



the form

z(s) = A(s)z(s7) + B(s)w(s), (1)

where w(s) is a zero-mean unit-variance white noise process uncorrelated with
x(0), the state at the root node of the tree. Measurements can be made at
any node:

y(s) = Cls)z(s) + v(s), (2)

where v(s) is white, zero-mean, and uncorrelated with the process @(s).

From (1), the whiteness of w(s) implies that the state & (s) conditionally decor-
relates the ¢ + 1 subtrees connected to node s. This Markovianity property of
the multiscale tree admits efficient scale-recursive smoothing algorithms (Chou
et al. (1994a, 1994b)), similar to the Rauch-Tung-Striebel smoothing algo-
rithm (Rauch et al. (1965)). The algorithm, summarized in Appendix A, is
exact and has a computational complexity of O(k*N), where k is the state
dimension of (s) and N is the number of nodes at the finest scale, in or-

der to compute the estimates and error covariances at all nodes of the tree,
compared to O(N?) for the standard LLSE formalism.

It is important to realize that the multiscale model (1), together with the
covariance P(0) of state @(0) at the root of the tree, provides an implicit
specification of the full covariance of the multiscale process. The explicit co-
variance between any two nodes #(s;) and (s2) can be easily calculated as

P(sy,50) = E [2(s1)2” (52)] = ®(51, 51 A 52) P51 A 52) 87 (52,81 A 52), (3)

where s; A s5 is the first common ancestor of s; and s;, P(s; A s3) is the
covariance of &(s; A s2), and ®(s, o) is the state transition matrix from any
node o to direct descendent s. For example, referring to Fig. 2,

P(sai,u) = B [x(so:)a” (u)] = A(sa;) A(s) P(57) AT (u). (4)

Furthermore, the covariances of (s) at each individual node can be recursively
computed from a tree-recursive Lyapunov equation:

P(s) = A(s)P(s7)A"(s) + B(s)B"(s) (5)

Thus the calculation of P(s) and any individual P(s, s2) is computationally
simple (at most O(N) for all of the P(s)), whereas clearly the calculation of
all of the cross-covariances P(s1, $2) is prohibitively complex.



The utility of the efficient estimation algorithm in Appendix A for the multi-
scale model (1),(2) depends, of course, on the expressive power of models of
this form. There exists a body of research (Luettgen et al. (1993); Daniel and
Willsky (1997b); Irving et al. (1997); Irving (1998)) for the stochastic real-
ization of multiscale models that exactly or approximately match the second-
order statistics of a given process.

Let x denote the ideal finest-scale process we wish to realize, and let x denote
the subset of the state variables of a tree model we choose to use to model
x- That is, we wish to specify a tree model such that the covariance, Px
approximately equals the ideal covariance P,. As discussed in previous work
on multiscale modeling, the realization problem consists of two distinct but
related steps: (i) the specification of the state variables (s) at every node;
and (ii) the specification of the matrices A(s), B(s).

The key in defining the coarser scale states (s) is in satisfying the tree Marko-
vianity property; that is, to decorrelate the disjoint sets of variables on the
several subtrees that node s separates. Defining each state vector ¢(s) as a
linear functional of the process x,

z(s) = L(s)x, (6)

a general method for constructing L(s) to achieve the required exact or ap-
proximate decorrelation is described in (Irving (1998)) and represents a gen-
eralization of Akaike’s canonical correlations algorithm (Akaike (1975)). How-
ever in some cases, including ours, this step can be bypassed completely. As
developed in (Luettgen et al. (1993)), for the case of first-order Markov process
an exact multiscale realization can be constructed as shown in Fig. 3(a). This
so-called endpoint model takes advantage of the fact that conditioned on the
values at the two endpoints of any time interval, the remaining uncertainty
about the values of a Markov process inside that interval is independent of
those outside the interval. Since descendents of each node s in the figure only
involve process values within the interval associated with node s, we immedi-
ately have tree-Markovianity.

In general, a model which collects the entire modeled process at the finest
scale leads to considerable redundancy. In the case of the endpoint model just
described, this redundancy is quite apparent, as the endpoints comprising the
state at any parent node are copied into some of the descendent nodes. This
suggests an alternative, Fig. 3(b), in which we eliminate this redundant copy-
ing and instead include endpoints of successively smaller intervals, leading to a
non-redundant endpoint model. In this case, the process being realized has its
sample values distributed over all of the tree nodes rather than having them all
collected at the finest scale. While the existence of the non-redundant model
illustrated in this figure represents a modest contribution to multiscale real-



ization theory, its importance for the subject of this paper is far greater as its
use greatly simplifies time-recursive estimation, as will be seen in Section 4.3.

Once the state variables are specified, the second step of the realization prob-
lem is the construction of the dynamic matrices A(s), B(s). Since we can
interpret (1) as the sum of an estimate (s) based on its parent & (s7) and the
(orthogonal) error in this estimate, these matrices are completely determined
by the joint statistics of (s) and @ (s7):

(s,87) P~ (s7), (7)
(s) — P(s,s7) P~} (s7)P" (s, 7). (8)

Thus determining these matrices requires computing the joint parent-child
statistics at each node. From (6), if we assume that the realization exactly
matches the desired statistics, i.e., that P, = Px, then

P(s,57) = L(s)PxL"(s7), (9)
P(s)=L(s)P,L"(s). (10)

At first glance this seems prohibitive, as it implies that we need to explicitly
calculate and store the entire covariance P,. However, from (7),(8) we really
only need the second-order statistics of parent-child state pairs, which repre-
sent only low-dimensional projections of the full covariance. In particular, for
the endpoint models in Fig. 3, the computation of A(s) and B(s) requires the
specification of a relatively sparse subset of the elements of P, of cardinality

O(N) rather than O(N?). It is this fact that leads us to an efficient solution
to time-recursive multiscale estimation of diffusion processes.

3 Multiscale Dynamic Estimation
3.1  General Approach

Consider a discrete-time system, whose temporal dynamics are governed by

2(t+1) = Agz(t) + wa(t), (11)

where w,(t) is the zero mean process noise with diagonal covariance @ ;. The
measurements are

Ya(t) = Ca(t)z(t) + va(t), (12)



where v4(t) is the measurement noise with zero mean and diagonal covari-
ance Rj. The temporal dynamics, process noise, and measurement noise are
assumed to be stationary in time, so A4, Q 4, and R, are independent of £.
For the applications we have in mind (see Section 4) z(¢) would represent a
spatially-discretized distributed parameter process and (11) would represent
the corresponding temporally-discretized dynamics, so that A, represents the
discretization of a partial differential operator in space. In addition, Ry is di-
agonal and the components of y,; represent independent point measurements
of the distributed process.

We are interested in modeling the estimation error, so we let

x(t|7) = 2(t) — z(¢|7). (13)

where 2z(t|7) denotes the estimate of z(¢) based on measurements through
time 7. The Kalman filter, as sketched in Fig. 1, consists of a prediction stage

2(t+ 1)) = Agz(t]t), (14)

and a measurement update stage

2(tt) = (¢t — 1) + x(t]t — 1). (15)

In standard Kalman filtering the estimate x(¢|t — 1) is calculated explicitly as

X(t)t — 1) = Py(tlt — 1)CT (CaPy(tlt — 1)CT + Ra) " g(t),  (16)

However for the problems of interest here the dimensionality of x(¢|t—1) makes
this explicit calculation either impossible or at best exceedingly complex.

The alternative approach that we propose in this paper is to implicitly cal-
culate and propagate the statistics of the estimation error as a sequence of
multiscale models, illustrated in Fig. 4. Specifically, suppose that we have a
multiscale model A(s;t|t — 1), B(s;t|t — 1) for the prediction error, defining
the states as

(s t|t — 1) = L(s)x(t|t — 1). (17)

The multiscale estimation formulation in Appendix A yields the estimates
Z(s;t|t — 1) and a multiscale model A(s;t|t), B(s;t|t) for the updated esti-
mation error x/(t|t):

a(s;8]t) = L(s)x(t]t), (18)



where the parameters A(s; t|t) and B(s;t|t) computed as part of the multiscale
estimation process. That is, if we start with a multiscale model (17) for x(¢|t —
1) we directly obtain an analogous model (18) for x(t|t) without explicitly
calculating P, (t|t).

To complete one step of the recursion we need to compute a multiscale model
for the next predicted errors

x(t+ 1[t) = Aax(t|t) + wa(t) (19)

without explicitly calculating P, (¢t + 1|t). Finding the predicted multiscale
model, not provided by the multiscale estimation formulation, is explored in
the following subsection and is novel to this paper.

3.2 Multiscale Prediction Step

We assume that the linear functionals L(s) have been specified and do not
vary over time, although in general one might expect these linear functionals to
change depending on how the statistics of the one-step prediction errors vary
over time. With the choice of the linear functionals L(s) made, we are left
with the final key issue, namely determining and propagating the parameters
of the multiscale model through the temporal dynamics (19).

We assume that we know the predicted model A(s;t|t — 1), B(s;t|t — 1),
P(s;t|t — 1) in Fig. 4. Using the estimation and error modeling algorithms
(Appendix A) we can compute the corresponding quantities A(s;t|t), B(s;t|t),
and P(s;t|t) for the updated multiscale model. Finally we need to calculate
the corresponding quantities A(s;t + 1|t), B(s;t + 1|t), and P(s;¢ + 1|t) for
the predicted model for x(t + 1]t) whose states are

2 (s;t+ 1[t) = L(s)x(t + 1]t). (20)

From (7), (8), (9), (10), we see that A(s;t+1|t) and B(s;t+1|t) will be deter-
mined if we determine both the individual state covariances P(s;t + 1|t) and
the parent-child cross-covariances P(s,s¥;t + 1|t). To derive expressions for

the individual elements of these covariances, we first substitute the temporal
dynamics (19) into (20):

@ (s;t + 1)) = L(s)Aax(t|t) + L(s)wa(t). (21)

Unless A; and L(s) commute, the term L(s)Agx(t|t) mixes the linear func-
tionals used to form the states @(s;¢[t) in (18). If we let I (s) denote the ith



row (linear functional) of L(s) then

wilsit+ 1[t) = 17(s) Aax(t}t) + 1 (s)wa(t). (22)

The term I7 (s) A4 represents some linear functional of x(t[t), but in general
it will not correspond to any of the linear functionals which we already have
in L(s). However, it is always possible to write it as a linear combination of
existing functionals, since the collection of linear functionals at the finest scale
already forms a basis. Therefore we can write

8,3 T
= > hjli(o (23)

(0.4)€ES

allowing us to express z;(s;t+1|t), not in terms of x(¢|t), but instead in terms
of selected model states:

zi(s,t +1)t) = Y hlizi(o,t]t) + 1T (s)wa(t). (24)

(0.4)€S

From (24) we can compute the quantities P(s;t+ 1|t) and P(s, sy;t+1|t) by
computing certain covariances

Blai(s;t + 1t)a(us t + 1]1)], (25)

which itself is computed from the known covariances P(s;t|t) and (3). How-
ever, as we pointed out in Section 2, calculating all or even many of these
cross-covariances is prohibitive, thus it is desirable to choose among the vari-

ous solutions to (23) those in which k.’ are extremely sparse and in fact are

o,
nonzero only for nodes o that are near to node s.

Since the specific properties of the h . are highly dependent upon the dynam-
ics, the next section will study the problem in a specific dynamic context.

4 Applications to 1-D Diffusions

In this section we apply the ideas of Section 3 in detail to estimating 1-D
diffusion problems. We will develop solutions to the two major issues identified
in Section 3: the choice of the linear functionals L(s), and the propagation of
the multiresolution model. In Section 5 we will illustrate the performance of
the resulting estimator.

10



4.1 Problem Setup

The point of departure for this application is 1-D damped heat diffusion pro-
cess on a rod or ring satisfying the following stochastic PDE:

0z(l, 1) 0z(1,7)
=a-

or ol

—b-z(l,7)+ c-w(l,T), (26)

where z(l,7) is the temperature at location [ and time 7, w(l,7) is a white
Gaussian noise with unit variance, and [ € [0, L]. Constant a is related to the
heat conduction coefficient and the problem dimension; b controls the heat
loss to the surrounding coolant, whose temperature is set to zero without loss
of generality.

The number of free parameters in (26) can be reduced by normalizing the
spatial dimension to unit length and the diffusion parameter to 1:

Oz(l, ) B 0*z(1,7)
or o2

—pB-z(L,7)+v-w(l,T). (27)

A number of finite difference schemes can be applied to discretize this PDE
to arrive at a system of difference equations in the form of (11)

2(t+1) = Agz(t) + wa(t), (28)

where z(t) is the vector containing the temperatures at all spatial grid points
at time step ¢, and wg4(t) models the process noise, with covariance Q. For
our purposes such a discretized model plays two related but distinct roles: the
prediction of the estimates (14), and to provide the dynamic matrix (23)—(24)
to predict the estimation error statistics. As we will see, for the latter case it
is desirable to choose Ay to be banded with relatively small bandwidth, which
arises if we use an explicit finite-difference temporal discretization. We use a
simple forward Euler scheme, in which case Ay is tridiagonal and Q; = o2 1.
Of course, if we use such a scheme prediction of the estimates (14), care must
be taken to ensure that the spatial discretization Al and the temporal step A1
are small enough for numerical accuracy and convergence (Strikwerda (1989)).

Obviously a better choice for propagating estimates would be an implicit dis-
cretization scheme, which would result in a dense matrix A;. We can actually
consider using different A, for the two cases: an implicit, more “exact”, scheme
for the prediction of the estimates, and an explicit scheme for the error model,
propagating the error statistics only approximately. Consequently the way
in which new measurements are incorporated in the update step will not be

11



optimal, however the multiscale error model already introduces an approxi-
mation into the update step, and we will see that the net effect of all of these
approximations is a surprisingly small loss in performance.

We assume point measurements that may be irregular in space, but stationary
in time (except for the last example in Section 5):

Ya(t) = Caz(t) + va(t), (29)

where Cj is a selection matrix and the measurement noise vy is white, co-
variance Ry = ¢2I, uncorrelated with z(¢) or w,(t). For a given particular
measurement configuration C; we are left with only two free parameters: 3
and o2 /o2,

Of course the complete specification of the model (28) also implies the speci-
fication of a specific set of boundary conditions. For the purpose of describing
our methodology in this section, we will assume circular boundary conditions,
z(0,7) = z(L, ), physically corresponding to a thin cooling ring immersed
in a coolant. In this case, the steady-state process variances are constant as
long as the process (26) has spatially constant parameters; that is, the diago-
nal of P, is 6,1. We will use the more familiar notion of signal-to-noise ratio

SNR = 10log (a;/a?}) instead of 02 /02. We can also adjust o2 to normalize

az to 1. The stipulation of other boundary conditions leaves the linear func-
tionals and the multiscale prediction algorithm unchanged and affects only
the resulting numerical values.

4.2 Linear Functionals

We are seeking a set of linear functionals which allow us to develop an ac-
curate multiscale model for the steady-state predicted estimation errors in
the context of one-dimensional diffusion. We propose to model the one-step
predicted estimation errors as Markov processes, motivated by experimental
work(Chin et al. (1995)), which demonstrated cases in which estimation er-
rors could be well-modeled by Markov random fields, and by theoretical work
(Coleman (1995)), which showed that continuous-time, continuous-space heat
diffusion models are Markov in steady-state.

In the specific case of one-dimensional Markov processes we have already seen
in Fig. 3 an exact multiscale model (Chou et al. (1994a); Luettgen et al.
(1993)), in which the coarser scale states are defined as so-called “endpoint”
linear functionals, for which each state consists of the finest-scale process val-
ues taken at state endpoints. Moreover, it has been demonstrated that such a
choice of state is effective for many other processes as well (Daniel and Will-

12



sky (1997a)). Consequently we will investigate the use of such functionals for
space-time estimation problems of the type examined in our paper.

We will test our choice of linear functionals in two ways. We begin by deriving
the best choice of linear functionals and compare these to the chosen endpoint
functionals. Next, in Section 5 we will compare our multiscale approach, based
on endpoint linear functionals, with the exact Kalman filter.

For small-size systems it is computationally possible to explicitly solve the
Riccati equation for the exact steady-state error covariance, computing the
full covariance P,y (t|t — 1) for the process to be realized at the finest level
of the tree. We can then use a method of canonical correlations (CCR) (Irv-
ing (1998)), applying singular value decompositions to parts of covariance
P, (t|t — 1), to produce at each node s a set of linear functionals ordered by
statistical significance, measuring the degree to which a functional decorre-
lates node s from the remainder of the tree. In this way we can find the most
appropriate selection of linear functionals to construct a multiscale realiza-
tion. The insights gained from this procedure, applied to small-size systems,
may then be applied to larger systems, where neither the Riccati equation nor
CCR are computationally feasible.

Except in very special cases, the Riccati error covariance is spatially nonsta-
tionary and non-Markov as well. Nevertheless, the multiresolution represen-
tation still represents an excellent choice. Fig. 3 illustrates the application of
CCR to decorrelating the interval {1 — 16} from {17 — 32} for two different
measurement locations. Because of the intrinsic nonstationarity introduced
by the tree, the location of the measurement has some influence on the re-
sults of CCR. The four most significant linear functionals produced by CCR
are shown for the “best” (location 8) and “worst” (location 16) measurement
placements. The immediate conclusion is that the two most significant linear
functionals are almost completely concentrated on the interval end-points. The
relative insignificance of the third and fourth linear functionals as a function
of measurement location is depicted in Fig. 6.

An alternative approach is to use the multiscale model itself, based on end-
point functionals, assessed via a fractional variance reduction (FVR) criterion,
comparing the steady-state process variance and the steady-state updated er-
ror variance as a measure of estimator performance:

Var(s.s. process) — Var(s.s. updated error)

FVR = (30)

Var(s.s. process)

For instance if the FVR for the optimal estimator 1s 0.99 and for a suboptimal
estimator is 0.98, we would argue that the suboptimal estimator has done a
very good job, although its error variance is twice as large as the optimum.

13



Fig. 7 depicts results for four different measurement locations. Fig. 7(a) shows
the optimal and multiscale FVRs; at the resolution of this plot all of these
curves are indistinguishable. Fig. 7(b) displays the percentage difference be-
tween each of the multiscale FVRs and the optimum; the differences are very
small, peaking in the worst-case with an FVR of 0.596, whereas the optimal
estimator has an FVR of 0.6.

4.8 Multiscale Prediction Step for 1-D Diffusion

For the small examples considered thus far we could explicitly solve the Ric-
cati equation, compute Py (¢t + 1|t), and determine the multiscale model for
x(t + 1|t). For large problems, however, we must directly infer the model for
P, (t+1|t) from the model for the updated errors Py (t|t), which is computed
by the multiscale estimation algorithm. The problem is that only the indi-
vidual node covariances are explicitly calculated during multiscale estimation,
whereas in general the mixing due to the dynamics A4 requires that more
distant correlations be calculated (as specified by the k.7 in (23)-(24)).

However, for the diffusion processes of interest here we can construct the multi-
scale model for x (¢t + 1|t) with very few additional calculations. In particular,
as we argued in Section 4.2, the prediction error process x(t + 1|t) is well-
approximated as a low-order Markov process in space, implying that we can
represent it accurately using an endpoint multiscale model, most importantly
a non-redundant endpoint model as in Fig. 3(b). Furthermore, for a diffusion
process the matrix A, is tridiagonal, implying that the dynamic evolution of
the estimation error at any spatial location involves only the value of the error
at that location and its nearest neighbors. As we can see from Fig. 3(b), the
left and right spatial neighbors of any element of any node s can be found
in s, the parent of s, or a child of s. Consequently the statistics required to
predict the multiscale model for x(¢ + 1|t) are never more than three scales
apart, regardless of the overall size of the problem. As a result, the complexity
per tree node to construct this model is O(1), so that the total complexity is
only O(N).

4.4 Iterative and Recursive Implementation

The complete algorithm we have just described can be used in one of two ways.
One, to obtain an approximate multiscale model for the steady-state prediction
error process by running the algorithm iteratively off-line until convergence is
achieved. Second, to use this algorithm to provide a multiscale error model
dynamically at each step of the recursive estimation procedure for the initial,
transient phase of estimation or for temporally non-stationary problems. The

14



following paragraphs comment on issues of complexity, initialization, stopping
criteria, and sources of inaccuracy.

The computational complexity per time-step of the algorithm is as follows. The
end-point linear functionals have a state dimension < 3 for any node on the
tree, regardless of problem size. Therefore the total complexity of the update
step is O(N). From the previous section, using the same linear functionals,
the prediction step complexity is also O(N), therefore the total complexity of
the dynamic multiscale estimator for discretized diffusion is only O(N) per
time step!

The initialization of our algorithm takes the form of specifying a multiscale
model for x(0), the prior estimation errors. Constructing such a model involves
evaluating those elements of the prior covariance Py (0) in order to derive the
self statistics of each tree node and the cross statistics between every node and
its parent. While covariance extension and maximum-entropy methods can be
used, often we can obtain these desired elements more easily using the FFT if
the dynamics are space-invariant and assuming circular boundary conditions.
This latter method is used for initialization in the examples in Section 5.

If we are iteratively calculating a multiscale model for the steady-state esti-
mation errors, then the iteration stopping criterion is a critical issue. The con-
vergence of the solution of the time-varying Riccati equation to steady-state is
controlled by the slowest time constant of the error dynamics A4 (I — K (00)Cly);
choosing the number of iterations to be several times this time constant pro-
vides a conservative bound. For large problems this time constant will gener-
ally be unavailable, moreover taking this conservative approach may lead to an
excessive numbers of iterations. An alternative, adaptive, stopping criterion is
to examine the diagonal elements of P, (t|t) and stop when these suggest con-
vergence, however in our experiments we restrict the number of iterations to
be O(log N) so that the total complexity is O(N log N). Although this implies
that the resulting multiscale estimator may not have converged, the results
demonstrate that the performance of the resulting estimators is close to the
optimal Kalman filter.

Given that the multiscale estimation algorithm of Appendix A is exact, the
only sources of error lie in the realized multiscale model itself: the termination
of iterations prior to convergence, the temporal and spatial discretization of
the dynamics, and choosing end-point linear functionals as the basis for the
multiscale model. Furthermore, because our model propagation assumes the
updated statistics to be exact, it is possible that errors are accumulating over
time. Although each of these sources of error can be reduced at the expense of
additional computational complexity, the results of the following section will
show that the algorithm performs nearly optimally at little statistical cost.
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5 Examples and Results

In this section we illustrate the application of our methodology to several
examples of size N = 64. At this size exact calculations for the optimal esti-
mator are still feasible, however the iterative multiscale algorithm described in
this paper can in principle be applied more generally to much larger dynamic
processes whose steady-state error process can be adequately modeled using
end-point linear functionals and whose dynamics are local. This section will
illustrate some extensions and departures from the basic diffusion problem
described in the preceding section.

5.1 Cooling Ring

We start with a cooling ring and a single measurement. The steady-state pro-
cess variance has been normalized to 1. Fig. 8(a) shows the variance reduction
plots for several values of SNR and heat loss parameter 5 = 10. As the SNR
increases, so does the percent variance reduction. In all cases, the multiscale
estimator is less than 0.2% poorer than the optimal estimator in steady state.
The greatest degradation in performance occurs in regions furthest away from
the measurement, where the error variances are large.

The single measurement case is, in a sense, the worse case scenario, as the
system is only weakly observable. In multiple measurement cases, the perfor-
mance of our multiscale estimator compared to the optimal i1s generally better

than that shown in Fig. 8 (Ho (1998)).

5.2 Pinned Fin

In this example we replace the cyclic boundary condition by the more realistic
condition for a cooling fin: one end of the fin is pinned to a heat source and the
other end immersed in a coolant. The boundary condition at the heat source
is Dirichlet: z(0,t) = zo. At the free end, the heat flux is set to be equal to
the heat loss, 0z(l,t)/0l = —pz(l,t). A second variation recognizes the fact
that the heat loss parameter # may be spatially varying if the coolant is non-
homogeneous (Aihara (1997)) (e.g., a partially insulated / partially cooled
fin). The discretized dynamic equation (28) will then have a non-circulant A4
and an extra term Bgu(t) to account for the boundary condition:

z(t+1) = Agz(t) + Bau(t) + wa(t). (31)
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With non-circular boundary conditions or spatially-varying heat loss 3 the
steady-state process becomes spatially non-stationary, requiring a modified
definition of SNR; we will use the maximum pointwise SNR, 101log (max; ,(7)?/c2).

Fig. 9(a) shows the spatially nonstationary steady-state process variance and
the steady-state error variances of the estimators for the case in which mea-
surements are available at two spatial locations. The plots in panel (c) of the
latter two are indistinguishable here: their difference is only a fraction of a
percent, demonstrating the excellent performance of our method. Of course
for truly large problems we would not have access to the optimal estimates
nor the actual error variances of our suboptimal estimator. What we do have,
however, is the multiscale model for x(t|t), the variances that this estimator
believes it is achieving. This is illustrated as the dotted line in panel (a). Note
that these variances are also quite accurate, although they slightly underesti-
mate the actual error variance.

Fig. 10 shows the same pinned fin example of Fig. 9 except that a measurement
is available only every 200 prediction steps, thus allowing substantial mixing
to occur between measurements. Since many predictions steps must be taken
for every update step, the effects of the approximations in our multiscale
algorithm are much more pronounced, yet in the worse case it is still within
3% of the optimal estimator.

5.3  Advection-Diffusion

Our multiscale methodology is also capable of modeling advection-diffusion
processes, which have been employed in a wide variety of applications, espe-
cially in fluid dynamics, from pollution monitoring (Omatu et al. (1988)) to
tracer movements in oceanography (Wunsch (1988, 1987)).

The resulting dynamics

dz(l,7)  0%z(l,7) N 0z(l,7)

ar EYE P ol _5(1)'z(lv7—)+7'w(177_)7 (32)

model a thin pipe, in which a liquid flows towards positive [ from a reservoir.
Fig. 11 displays the results from one such estimation problem with measure-
ments at two spatial locations. The multiscale approximate estimator tracks
the performance of the optimal estimator closely. Also, the approximate error
variances captured by the multiscale model (corresponding to the dotted line
in panel (a)) provide a very good approximation to the actual error statistics.
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5.4 Recursive Implementation and Temporally Nonstationary Performance

Fig. 12 illustrates the application of the recursive version of our algorithm to a
temporally nonstationary situation, based on the advection-diffusion dynam-
ics in (32), initializing the process with the non-equilibrium initial condition
indicated by the solid line in Fig. 12(a). The measurements, taken once every
100 prediction steps, are nonstationary: at each measurement time the num-
ber of measurements is Poisson (mean 4) and the measurement locations are
uniformly distributed.

Since there is no steady-state, we have depicted a snapshot of the process
and estimation results at time step 1300 (i.e., after the 13th update). The
dash-dot line in Fig. 12(a) indicates the actual process at time 1300, while
Fig. 12(b) depicts the estimation results after the measurement update. The
two measurements taken at this time are indicated by the small circles. As
these figures illustrate, the estimates produced by the optimal Kalman fil-
ter and by our multiscale recursive estimator are virtually identical and the
differences are statistically insignificant.

6 Conclusion

In this paper we have developed a new approach to suboptimal estimation for
recursive estimation for distributed parameter space-time phenomena. The
point of departure for our work are the basic equations of Kalman filtering,
which can be prohibitively complex because of the growth in computational
complexity with the dimension of the problem of interest. Indeed this is one
of the most significant challenges faced in remote sensing data assimilation.

Our solution to this problem involves making use of the observation that
each update step in recursive estimation can be viewed as a static estimation
problem, in which the errors in the predicted estimates are estimated based on
the latest measurement innovations. Rather than explicitly propagating the
full error covariance for this prediction error field, we consider propagating
a model. In particular, rather than using standard models such as Markov
random fields, we have chosen to use a recently introduced class of multiscale
models, which leads to extremely fast algorithms for estimation. The major
challenge in applying this multiscale methodology is in developing a method
for propagating multiscale error field models through the mixing introduced
by the temporal dynamics of the process being estimated.

The estimation results obtained indicate that near-optimal performance can
be achieved using this methodology. Indeed, we would argue that, compared to
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the intrinsic model uncertainty in many of the space-time processes of interest
such as remote sensing, the differences in performance between our algorithm
and the Kalman filtering solution are insignificant.

While we have illustrated our results here for 1-D spatial processes, much
greater benefits can be expected in 2- and 3-dimensional problems. While the
basic concept of how to develop this extension is described in this paper, im-
portant issues remain in order to make this extension a reality. In particular,
the choice of multiscale states in the representation of estimation error fields
represents a first important problem that is currently under investigation.
In addition, while diffusion and advection-diffusion problems such as those
considered in this paper are of considerable practical interest in higher di-
mensions, it is also of considerable interest to understand how to adapt our
methodology to dynamics that allow wave-like behavior. Obviously for such
models we would expect that the propagation of error models over time would
need to account for the modes of wave propagation. Issues such as these as
well as developing a deeper understanding of how to capture temporal mix-
ing of scales within our multiresolution framework represent clearly defined
directions to be pursued in order to fully realize the promise suggested by the
results presented in this paper.
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A Multiscale Smoothing Algorithm

The essential equations of the multiscale smoothing algorithm are listed here.
More detailed development of these equations can be found in (Chou et al.

(1994a); Luettgen and Willsky (1995)).

Suppose that we are given the multiscale process and measurement equations:

2(s) = A(s)2(s7) + B(s)w(s) (A.1)
Cls)(s) + v(s) (A2)

where w(s) is a zero-mean unit-variance white noise process and v(s) is a
zero-mean white noise process with covariance R(s). We are also given the
statistics of the states at the root node: zero mean with covariance P(0).
First, the prior covariances of all states at individual nodes on the tree are
computed via a Lyapunov equation

P(s) = A(s)P(s7)A(s) + B(s)B(s) (A.3)

The core of the multiscale algorithm consists of an upward estimation sweep
and a downward smoothing sweep, but first let us define a few quantities:

Y, ={y(o)|o is a descendant of s} (A.4)
z(ols)=E[z(o)|loc € Y,Uy(s)] (A.5)
Z(o|s+)=FE [z(0o)|o € Y] (A.6)
P(as) = Cov [z(7) — &(]s)] (A7)
P(7|s+)=Cov [z(0) — &(o]s+)] (A.8)

It requires the following upward model, corresponding to the the downward

model in (A.1),
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F(s)=P(s7)AT(s)P(s)" (A.13)
E [w(s)i(s)"] = P(s7) — P(s7)A” (s)P(s) " A(s)P(s7) = Q(s) (A.14)
The upward sweep computes the best estimate of the states at a node given

all measurement below that node. It consists of three steps at each scale:
a) Update step:

(s]s)=&(s|s+) + K(s) [y(s) — C(s)&(s[s+)] (A.15)
P(s|s)=[I — K(s)C(s)] P(s|s+) (A.16)
K(s)=P(s|s+)C"(s) |C(s)P(s|s+)C" (s) + R(s)| (A.17)

b) Prediction step:

Z(s|sa;) = F(sa;)@(sai|sa;) (A.18

P(s|sa;) = F(sai)P(sai|sai)FT(sai) + Q(sw) (A.19)
¢) Merge step:

:i:(s|3—|—):P(s|s—|—)iP_l(s|sai):f3(s|sai) (A.20)

P(s|s+)=|(1 — q)P(s)_1 + iP_l(sLsozi) i (A.21)

The downward sweep computes the best estimate of the states at a node given
all available measurements:

#(5]0) = #(s1s) + T (5) [&(s710) — &(s7]s)] (A.22)
P(s/0) = P(sls) + J(s) [P(s/0) — P(s7]s)] 7% (s) (A.23)
T(s) = P(s]s)F" ()P (s7]s) (A.24)

The smoothing error can be modeled as

&(s)0) = J(5)&(s7]0) + w(s) (A.25)

where &(s]|0) = &(s) — (s]0), and

E [(s)io(s)T] = P(s|s) — P(s|s)F7 (s)P~"(s7|s)F(s)P(s|s) (A.26)

Note that the state covariances at individual nodes of the smoothing error
model have already been computed in (A.24) and (A.26).
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Figure Captions

Fig. 1. Two possible sequences of steps for dynamic estimation: (a) the stan-
dard Kalman filter, in which covariance matrices are propagated; (b) proposed
alternative, in which models are propagated.

Fig. 2. A portion of a dyadic multiscale tree.

Fig. 3. Two possible 1-D Markov process realizations. (a) Endpoint model of
(Luettgen et al. (1993)) for a first-order Markov process, here consisting of six-
teen elements x(1)...x(16). Note that the entire set of samples is represented
at the finest scale, but that some of these values are redundantly represented
at nodes at higher levels in the tree. (b) Proposed nonredundant multiscale
model for the same process, with the same root node, but with descendant
states which are defined as endpoints of successively smaller intervals, elimi-
nating redundancy. Note that each sample of x appears only once in this tree
model.

Fig. 4. A schematic of the proposed multiscale iterative method for dynamic
estimation, modeled on the Kalman filter.

Fig. 5. The four most significant the linear functionals that decorrelate the
steady-state predicted estimation errors at points 1 — 16 from those at points
17—32 of a 32-element diffusion process (3 = 10, SNR = 0dB, At = 2x107?).
The measurement is at pixel 8 in (a), and at pixel 16 in (b). The singular value
is printed above each associated linear functional.

Fig. 6. The singular values of the third and fourth most significant linear
functionals as a function of measurement location.

Fig. 7. (a) The percent variance reduction of the optimal estimator and of the
multiscale estimator in steady state. (b) Percent degradation of the multiscale
estimator with respect to the exact solution. (# = 10, SNR = 0dB, At =
2 x 107%).

Fig. 8. (a) Percent variance reduction of the optimal estimator with one mea-
surement at location 23 for # = 10 and SNR = —10, 0, and 10 dB. (b) Percent

performance degradation with respect to optimal.

Fig. 9. Pinned fin with two measurements at locations 14 and 53. Heat loss
parameter 3 = 0 at locations 1 — 32 and 3 = 10 at 33 — 64. (a) Steady-state
process variances, steady-state estimation error variances, and the realized
variances at the finest scale of the suboptimal multiscale estimator. (b) Percent
variance reduction of the steady-state optimal estimators. (SNR = 0 dB) (c)
Percent performance degradation of the multiscale estimator with respect to
optimal.
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Fig. 10. As in Fig. 9, but with one measurement update every 200 prediction
steps. (a) Percent variance reduction of the steady-state estimators. (b) Per-
cent performance degradation of the multiscale estimator with respect to the
optimal.

Fig. 11. Liquid flow (p = —10) from a reservoir (location 1) through a thin
pipe, half insulated (8 = 0 at locations 1 — 32) and half exposed (3 = 10 at
33 — 64). Measurements at locations 14 and 53. SNR = 0 dB. (a) Steady-state
process variances, steady-state estimation error variances, realized variances
at the finest scale of the multiscale estimator. (b) Percent variance reduction
of the steady-state estimators. (c¢) Percent performance degradation of the
multiscale estimator with respect to the optimal.

Fig. 12. Cooling pipe. One update step for every 100 prediction steps. (SNR =
0 dB.) (a) True process at step 1300 and initial values of the process. (b)
Updated estimates at step 1300. The optimal and the multiscale suboptimal
estimates are indistinguishable at this resolution. The locations and values of
the two measurements at this update step are labeled with circles. Dotted
curves show the range of one standard deviation from the optimal estimates.
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(Fig. 9 — Ho, Fieguth, Willsky)
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(Fig. 10 — Ho, Fieguth, Willsky)
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(Fig. 11 — Ho, Fieguth, Willsky)




true process

)

- = - initial condition
—_— at step 500

location
Updated estimates KE
6 T T 1 std from KF Tj
- = — multiscale
- @] @] measurements
4 — e T s . = oL - = - process 1
210 -
o~ N -
-2 I I I I I I
0 10 20 30 40 50 60
location

(Fig. 12 — Ho, Fieguth, Willsky)




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.

11.

12.



