In this problem we will build a reaction-time testing circuit. The problem text is quite long because I will be explaining things in considerable detail; however the final circuit will not be particularly complicated. Read the problem very carefully, and try to proceed as systematically as possible.

Basically the circuit will wait for a few seconds, then turn on a light, and then count how many clock cycles it takes before you push a switch.

There are two inputs from the user:

1. Reset (i.e., start over)
2. React.

There are also four outputs from the circuit:

1. Wait (don’t react yet)
2. Go (react as quickly as you can)
3. Error (you responded inappropriately)
4. Outnum — an 8-bit number (your reaction time)

There is one clock supplied; it runs at 256 Hz (i.e., 256 cycles per second); note that $256 = 2^8$.

Here’s how the circuit will operate:

- Wait for the user to press “Reset”.
- Turn on “Wait”; turn off “Go” and “Error”. Wait for four seconds (in a good reaction-time testing circuit this waiting period should be random or something, but to keep things simple we’ll just wait for four seconds).
 - If the user presses “React” any time during these four seconds, turn on the “Error” output.
- After the four seconds pass, turn off “Wait” and turn on “Go”. Wait for the user to press “React”. Count clock cycles while waiting.
- If the user presses “React” before one second is up, then output the number of clock cycles on “Outnum,” the eight-bit output (you don’t have to show any LEDs or seven-segment displays or anything; just have an eight-bit quantity leaving your circuit and label it as “Outnum”).
 - If a whole second passes and the user hasn’t pressed “React” then output zero on “Outnum”.

[23%] Problem 1 – ASM Charts, Data Processing & Circuit Implementation
Basically we have three states here (although you may find using four states to be more convenient; the ASM Chart in my solution had four states). I'll get you started on your ASM Chart:

State 0: When user presses “Reset” go to State 1.

State 1: Count seconds using an eight-bit counter.

- If the user presses “React” turn on “Error” and return to State 0.
- Once four seconds are up, go to State 2.

State 2: Count clock cycles until the user presses “React”.

- If the user presses “React”, let “Outnum” equal the number of clock cycles and go back to State 0.
- If one second passes, let “Outnum” equal zero and go back to State 0.

Here’s what you need to do:

[6] b) Draw the data-processing logic. Identify clearly all controls from the control logic, all status lines going back to the control logic, and any inputs or outputs to the outside world.

[7] d) Implement the circuit, using whatever method you prefer. I recommend the MUX / Reg / Decoder approach, but any of the methods which we discussed in class will work fine.