SD 675 Pattern Recognition Assignment 1 (Assignments are to be done individually. Do not write a formal report.) ## **Purpose** This lab investigates eigendecompositions and orthonormal transformations. ## **Assignment** We have studied orthogonal whitening transformations (GED), however given two class covariances where $S_1 \neq S_2$, normally the transformation which whitens S_1 (i.e., transforms $S_1 \Rightarrow I$) does *not* diagonalize or whiten S_2 . Interestingly it is possible, however, to diagonalize both classes with a single transformation. Suppose we have the eigendecomposition $S_1 = V_1 \Lambda_1 V_1^T$. - a) Find T_1 , the orthonormal whitening transformation for class 1. Show that $T_1S_1T_1^T=I$. - b) Let $K = T_1 S_2 T_1^T$, the application of T_1 to class 2. Suppose we are given the eigendecomposition $K = V_k \Lambda_k V_k^T$, what is the transformation T_k to diagonalize (but not whiten) K? Verify that $$T_k T_1 S_1 T_1^T T_k^T = I$$ $T_k T_1 S_2 T_1^T T_k^T = \text{diagonal}$ That is, we have fully whitened class 1 and diagonalized class 2. c) We could have done all of the above in one step. Let $$A = T_k T_1$$ be the net transformation from (a) and (b), above. Show that A satisfies the generalized eigenequation $$S_1^{-1} S_2 A^T = A^T \Lambda$$ for some diagonal matrix Λ . This shows that it is possible to find the net transformation A directly from a single eigendecomposition. d) Would it be possible to *whiten* (and not just diagonalize) *both* classes simultaneously? Why / why not? Draw a neatly labelled sketch to illustrate the actions of T_1, T_k from (a) and (b). Your sketch should clearly illustrate why simultaneous whitening is / is not possible.